
100GBASE ER4 40Km QSFP28 Transceiver

SNR-QSFP28-ER4-40 Series

Single-Mode 100GBASE 4WDM 40KM QSFP28 Transceiver RoHS6 Compliant

Features

- Supports 103Gbps
- Single 3.3V Power Supply and Power dissipation < 5W
- Up to 40km over SMF
- RoHS-6 compliant (lead-free)
- Commercial case temperature range of 0°C to 70°C
- Four 25Gbps EML LAN-WDM channels on transmitter side
- APD and TIA array on the receiver side
- ♦ 4x25G electrical interface
- Duplex LC receptacles
- I2C interface with integrated Digital Diagnostic Monitoring

Applications

- 100G 4WDM-40 40km applications with FEC
- 100G Datacom&Telecom connections

Ordering Information

Part No.	Data Rate	Fiber	Distance *(note2)	Interface	Temp.	DDMI
SNR-QSFP28-ER4-40	103Gbps	SMF	40km	LC	0°C~+70°C	Yes

Note1: Standard version

Note2: Over SMF

*The product image only for reference purpose.

100GBASE ER4 40Km QSFP28 Transceiver

Product Description

SNR-QSFP28-ER4-40 module is designed for 100 Gigabit Ethernet links over 40Km single mode fiber. Digital diagnostics functions are available via an I2C interface, as specified by the QSFP+ MSA. And compliant with 100G 4WDM-40 MSA.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	Vcc	-0.5	3.6	V
Operating Relative Humidity	RH	5	85	%

*Exceeding any one of these values may destroy the device immediately.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	Tc	0		70	°C
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Power Dissipation	PD			5	W

Performance Specifications – Electrical

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes		
Transmitter								
Differential data input swing per lane				900	mv _{p-p}			
Input Impedance (Differential)	Zin			10	%			
Stressed input parameters								
Eye width		0.46			UI			
Applied pk-pk sinusoidal jitter		IEEE 802.3bm Table 88-13						
Eye height		95			mv			
DC common mode voltage		-350		2850	mv			
		Receiv	ver					
Differential output amplitude		200		900	mv _{p-p}			
Output Impedance (Differential)	Zout			10	%			
Eye width		0.57			UI			
Eye height differential		228			mv			
Vertical eye closure				5.5	dB			

Optical Characteristics 100GBASE 4WDM-40 Operation

Parameter	Symbol	Min.	Typical	Max.	Unit				
Transmitter									
Signaling Speed per Lane	BR _{AVE}		25.78		Gbps				
Data Rate Variation		-100		+100	ppm				
Lane_0 Center Wavelength	λ_{C0}	1294.53	1295.56	1296.59	nm				
Lane_1 Center Wavelength	λ _{C1}	1299.02	1300.05	1301.09	nm				
Lane_2 Center Wavelength	λ_{C2}	1303.54	1304.58	1305.63	nm				
Lane_3 Center Wavelength	λ_{C3}	1308.09	1309.14	1310.19	nm				
Total Average Output Power	Po			12.5	dBm				
Average Launch Power per	Peach	-2.5		6.5	dBm				

100GBASE ER4 40Km QSFP28 Transceiver

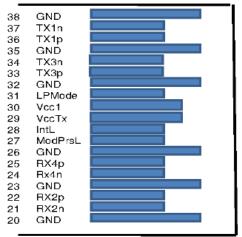
Lane*(Note3)					
Average launch power of OFF transmitter per lane				-30	dBm
Side-mode suppression ratio	SMSR _{min}	30			dB
Optical modulation amplitude*(Note4)	Poma	0.5		6.5	dBm
Difference in launch power between any two lanes (OMA)				4	dB
Optical Return Loss Tolerance		20			dB
Transmitter reflectance*(Note5)				-26	
Extinction Ratio*(Note6)	ER	4.5			dB
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}* ^(Note6)		{0.25, 0.	4, 0.45, 0.25,	0.28, 0.4}	
	R	eceiver			·
Signaling Speed per Lane	BRAVE		25.78		Gbps
Data Rate Variation		-100		+100	ppm
Damage threshold per Lane	Rdam	-2.5			dBm
Lane_0 Center Wavelength	λ_{C0}	1294.53	1295.56	1296.59	nm
Lane_1 Center Wavelength	λ_{C1}	1299.02	1300.05	1301.09	nm
Lane_2 Center Wavelength	λ_{C2}	1303.54	1304.58	1305.63	nm
Lane_3 Center Wavelength	λ_{C3}	1308.09	1309.14	1310.19	nm
Average Receive Power per Lane*(Note7)	Rxpow	-20.5		-3.5	dBm
Receive Sensitivity in OMA per Lane*(Note8)	Rxsens			-18.5	dBm
Stressed Receiver Sensitivity (OMA) per Lane*(Note9)	RX _{SRS}			-16	dBm
Optical Return Loss	ORL			-26	dB
LOS Assert	LOSA	-30			dBm
LOS De-Assert	LOSD			-20	dBm
LOS Hysteresis		0.5			dB
Conditions of stressed receiver se	ensitivity test:				
Vertical eye closure penalty* ^(Note10)	VECP	2.5			dB
Stressed eye J2 Jitter*(Note10)	J2	0.33		UI	
Stressed eye J4 Jitter*(Note10)	J4		0.48		UI
SRS eye mask defination {X1, X2, X3, Y1, Y2, Y3}* ^(Note10)		{0.39, 0.5, 0.5, 0.39, 0.39, 0.4}			

Note3: Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

Note4: Even if the TDP < 1.0dB, the OMA (min) must exceed this value.

Note5: Transmitter reflectance is defined looking into the transmitter.

Note6: Eye mask hit ratio is 5E-5.


Note7: Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance. Note8: Receiver sensitivity (OMA), each lane (max) at 5E-5 BER is a normative specification.

100GBASE ER4 40Km QSFP28 Transceiver

Note9: Measured with conformance test signal at TP3 for BER = $5*10^{-5}$. Note10: Vertical eye closure penalty, stressed eye J2 Jitter, stressed eye J4 Jitter, and SRS eye mask definition are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

100GBASE ER4 40Km QSFP28 Transceiver

QSFP28 Transceiver Electrical Pad Layout

GND 1 TX2n 2 тх2р 3 GND 4 TX4n 5 6 7 TX4p GND ModselL 8 ResetL 9 VccRx 10 SCL 11 SDA 12 GND 13 RX3p 14 Bx3n 15 GND 16 RX1p 17 RX1n 18 GND 19

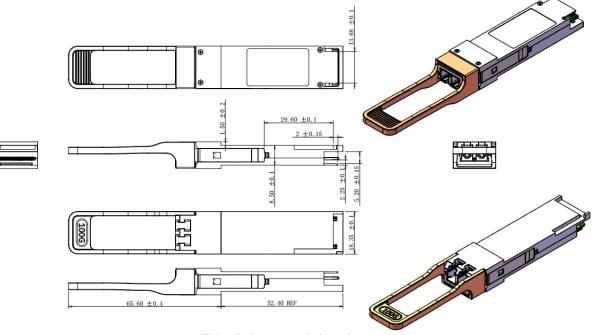
Top Side Viewed From Top

Bottom Side Viewed From Bottom

Pin Arrangement and Definition

Pin	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Тх2р	Transmitter Non-Inverted Data Input	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3	
7		GND	Ground	1	1
8	LVTTL-I	ModSelL	Module Select	3	
9	LVTTL-I	ResetL	Module Reset	3	
10		VccRx	+3.3V Power Supply Receiver	2	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3	
13		GND	Ground	1	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL	Interrupt	3	

Module Card Edge


LLC NAG Page 5 of 7

SNR-QSFP28-ER4-40 100GBASE ER4 40Km QSFP28 Transceiver

29		VccTx	+3.3V Power supply transmitter	2	2
30		Vcc1	+3.3V Power supply	2	2
31	LVTTL-I	LPMode	Low Power Mode	3	
32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1

GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table 6. Recommended host board power supply filtering is shown in Figures 3 and 4. Vcc Rx Vcc1 and Vcc Tx may be internally connected within the QSFP28 Module in any combination. The connector pins are each rated for a maximum current of 500mA.

Mechanical Specifications

*This 2D drawing only for reference

SNR-QSFP28-ER4-40 100GBASE ER4 40Km QSFP28 Transceiver

GUARANTEE:

CONTACT:

Addres: Building 57/2, Predelnaya Street, Yekaterinburg, Russia Tel: +7(343) 379-98-38 Fax: +7(343) 379-98-38

E-mail: info@nag.ru Online shop: http://shop.nag.ru