

Контроллер многофункциональный SNR-ERD-5

Инструкция по быстрой установке

SNR-ERD-5

Содержание

Введение	2
Основные характеристики	
Краткое описание	4
Подготовка к работе	9
WEB-интерфейс	10
Настройки LAN по средствам WEB-интерфейса	11
WEB-интерфейс взаимодействия с ИБП	12
SNMP-интерфейс	17
Оповещения о событиях SNMP Traps	
Подключение датчиков температуры SNR-DTS-2	18
Порты DIO	19
Конвертор интерфейсов	
Обновление программного обеспечения	21
BACKUP конфигурации	21
Работа с протоколом ТГТР	

ETHERNET REMOTE DEVICE

Введение

Данная инструкция предназначена для быстрого ознакомления с устройством, принципом работы, техническими характеристиками, и конструктивными особенностями контроллера многофункционального SNR-ERD-5.

Контроллер многофункциональный SNR-ERD-5 (далее - SNR-ERD) предназначен для организации автоматизированной системы управления производственными процессами, в том числе для измерения, сбора и хранения данных с первичных преобразователей и микропроцессорных преобразователей, обеспечения измерительных функции шлюзования различных интерфейсов и сетей связи, регистрации дискретных сигналов команд телеуправления, состояния оборудования, выдача обработки полученной информации и передачи её на вышестоящие уровни системы управления, управления UPS по средством протокола Megatec.

Область системы сбора применения: И передачи информации; автоматизированные учёта системы коммерческого И технического автоматизированные различных ресурсов, системы диспетчерского управления на объектах предприятий электросвязи, электроэнергетики, нефтегазодобывающей промышленность, а так же на предприятиях других отраслей промышленности.

Основные характеристики

Таблица 1 - характеристики устройства SNR-ERD-5

Характеристика	Описание
Электропитание	9-36B,
Интерфейсы связи	Ethernet 10/100, RS-232, RS-485, 1-Wire
Порты дополнительного питания внешних устройств	5В/20мА и 9-36В/200мА
Порты DIO (Digital Input/Output)	Режим DI: напряжение при XX – 3В, ток K3 – 2,6мА.
	Режим DO1-4,6: напряжение до 5В, рабочий ток до 10 мА Режим DO5: напряжение до 5В, рабочий ток до 200 мА
Порт «Датчик Фазы»	Входное напряжение 220В
Аналоговый вход	0-70В с погрешностью ±0,3В
TTX	100*70*19
Крепление, корпус	Корпус - термоусадка, крепление отсутствует
Условия среды эксплуатации	от минус 40 °C до плюс 55 °C
	относительная влажность не более 85 % при температуре 25 °C.
Электромагнитная совместимость	соответствует ГОСТ CISPR 24-2013

ETHERNET REMOTE DEVICE

Краткое описание

Устройство **SNR-ERD-5** представляет собой аппаратно-программный комплекс на основе микроконтроллера STM32F407. В энергонезависимой памяти микроконтроллера хранится программное обеспечение (firmware), которое определяет логику работы устройства. Пользователю доступна функция обновления программного обеспечения. Настройка и конфигурирование ERD осуществляется посредством встроенного WEB-конфигуратора и SNMP-интерфейса. На рисунке 1 представлен внешний вид SNR-ERD-5.

Рисунок 1 – Внешний вид SNR-ERD-5

На рисунке 2 представлено расположение разъёмов и рабочих узлов устройства SNR-ERD-5. Нумерация выполнена сверху вниз, слева направо:

Рисунок 2 – Контакты и рабочие узлы устройства SNR-ERD-5

На рисунке обозначены слева:

2х-контактный разъём для питания внешних устройств (1-2); 2х-контактный разъём для подачи напряжения питания устройства (3-4); 8и-контактый разъём для подключения DIO1-4 (5-12); Индикатор питания устройства «PWR» (13); Разъём RJ-45 для подключения к сети Ethernet 10/100 Мбит/с (14); Кнопка сброса на заводские настройки (15);

На рисунке обозначены справа:

2х-контактный разъем для подключения к сети AC 220B, функция «Датчик фазы» (16-17);

Составной 8и-контактый разъём: интерфейс 1-wire, DIO6, RS-485, ADC2 (18-25);

Составной 8и-контактый разъём: ADC1, DIO5, RS-232, 5В для питания внешних устройств (26-33).

Далее приводится описание разъёмов и назначение контактов.

2х-контактный разъём для питания внешних устройств:

Порт для питания Внешних устройств, например датчиков и/или приборов учёта. Напряжение на этом выводе соответствует входному напряжению на входе устройства:

- 1 положительный контакт;
- 2 GND.

2х-контактный разъём для подачи напряжения питания устройств:

Порт для подачи напряжения питания устройства 7-36 Вольт:

3 - положительный контакт, номинал 12 Вольт;

4 - GND.

8и-контактый разъём для подключения DIO1-4:

На разъёме (5-12) расположены порты DIO (Digital Input/Output):

- 5 Порт DIO1, 10мА;
- 6 Порт GND;
- 7 Порт DIO2, 10мА;
- 8 Порт GND;
- 9 Порт DIO3, 10мА;
- 10 Порт GND;
- 11 Порт DIO4, 10мА;
- 12 Порт GND.

Индикатор питания устройства «PWR»:

Индикатор (13) сигнализирует о режиме работы ERD. Функции индикации представлены в таблице 2.

Таблица 2 - Функции индикации PWR

Индикатор	Состояние	Функции индикатора
	индикатора	
PWR	не горит	Отсутствует напряжение питания.
	горит зеленым	Напряжение в норме, ERD Готов к работе.
	мигает зеленым	Напряжение в норме, ERD находится в сервисном режиме и готов к загрузке ПО.

.

ETHERNET REMOTE DEVICE

Инструкция по быстрой установке

Разъём RJ-45:

Разъём RJ-45 (14) предназначен для подключения к сети Ethernet 10/100 Мбит/с. Имеет индикаторы «LINK» и «Activity». Вид интерфейса Ethernet представлен на рисунке 3:

Рисунок 3 – Индикаторы разъема Ethernet

Функции индикации представлены в таблице 3:

Индикатор	Состояние индикатора	Функции индикатора
LINK LED	не горит	Кабель не подключен.
	горит зеленым	Кабель подключен.
	мигает зеленым	Кабель подключен, идет
		передача данных.
Activity LED	не горит	Скорость передачи данных 10 Мбит/с;
	горит оранжевым	Скорость передачи данных 100 Мбит/с

Кнопка сброса на заводские настройки:

Кнопка (15) утоплена внутрь корпуса и находится за 8ми контактным разъёмом. Сброс устройства в исходные настройки осуществляется удержанием кнопки в течении 4-5 секунд. Устройство запустит режим восстановления заводской конфигурации, после чего индикатор «PWR» начнёт мигать как при первичной подаче питания.

2х-контактный разъем для подключения к сети AC 220B:

Разъём (16-17) предназначен для подключения к сети 220В, функция «Датчик фазы», гальванически изолирован от основной платы.

16 - AC2;

17 **-** AC1.

Составной 8и-контактый разъём:

На разъёме (18-25) сосредоточены интерфейсы связи RS-485, 1-WIRE, а так же порт AI (Analog Input) и порт DIO6:

- 18 Общий (GND);
- 19 Порт для подключения датчиков по интерфейсу 1-WIRE;
- 20 Общий (GND);
- 21 DIO6;
- 22 Контакт В интерфейса RS-485;
- 23 Контакт А интерфейса RS-485;
- 24 Общий (GND);

25 - Аналоговый вход (AI) для измерения напряжения от 0 до 75В.

Составной 8и-контактый разъём:

На разъёме (26-33) сосредоточены интерфейс связи RS-232, выход для подключения реле, а так же порт AI (Analog Input):

26 - Общий (GND);

27 - Аналоговый вход (AI) для измерения напряжения от 0 до 75В;

- 28 Общий (GND);
- 29 DIO5 для подключения реле управления нагрузками, 200мА;
- 30 Общий (GND) контакт для подключения датчиков;
- 31 Контакт RxD интерфейса RS-232;
- 32 Контакт ТхD интерфейса RS-232;
- 33 Выход 5 вольт в качестве RTS сигнала интерфейса RS232.

Подготовка к работе

1. Подать напряжение питания на SNR-ERD. Дождаться прекращения мигания индикатора «PWR».

2. Подключить устройство к ПЭВМ посредством Ethernet-кабеля и установить необходимые сетевые настройки для того чтобы устройство и ПЭВМ находились в одной подсети (192.168.15.0/24);

Внимание: на устройстве по умолчанию включен DHCP-клиент. При первом включении (или при сбросе на заводские установки) устройство выполняет поиск DHCP-сервера в течении 10 секунд. Если DHCP-сервер отсутствует, после неудачных попыток, устройство принимает заводской IP-адрес. (либо последний записанный в память). При этом в WEB-интерфейсе отобразится сообщение «Нет соединения» рядом с переключателем DHCP

3. Запустить на ПЭВМ программу для просмотра WEB-страниц (browser) и в адресной строке ввести IP-адрес устройства;

- 4. В появившемся окне аутентификации ввести логин и пароль
- 5. Дождаться загрузки WEB-страницы.

Заводские сетевые настройки SNR-ERD-5 представлены в таблице 4. Таблица 4 – Заводские сетевые настройки

192.168.15.20
192.168.15.10
255.255.255.0
admin/public
35
50
69
80
(стандартный порт для
http соединения)
161
(стандартный порт для
SNMP соединения)
162
(исходящие сообщения)

WEB-интерфейс

WEB-интерфейс служит для конфигурирования режимов работы SNR-ERD-5, визуального контроля показаний получаемых от источника бесперебойного питания и датчиков, обновления ПО, а также ручного управления выходами и ИБП.

Для подключения к WEB-интерфейсу устройства может быть использована любой WEB-браузер без установки дополнительного программного обеспечения. Подключение осуществляется по стандартному протоколу HTTP. На главной странице WEB-интерфейса выведена общая информация и показания основных датчиков. Внешний вид WEB-интерфейса представлена на рисунке 4:

 S	SNR-ERD-5
(Общая информация
sysName	SNR-ERD-5
sysLocation	
Версия прошивки	2.0.0 [custom] [industrial] [beta] Feb 7 2020 12:39:41
МАС адрес	F8:F0:82:02:00:03
Uptime	
Перезагрузок устройства	
ADC IN	
Ошибки 1-Wire	
	Устройства
	IR-DTS 1918181898 32.5°C

Рисунок 4 – Главная страница web-интерфейса

Настройки LAN по средствам WEB-интерфейса

erd	SNR-ERD	9-5
Главная		
RS-485	Настройка LAI	N
Порты I/О 🔻	Доступ в Интернет	VES
Сервисы •		
UPS •	эведомлять при отключении интернета	
Настройка LAN	Уведомлять при отключении сетевого кабеля	
Администрирование •		
	Получение по DHCP	
	IP адрес	192.168.15.25
Поддержка •	Шлюз	192.168.15.10
Загрузка обновлений Выход	Маска	255.255.255.0
	DNS-серевер 1	8.8.8
	DNS-серевер 2	8.8.4.4
	Таймаут DHCP (сек)	16
	Принять	

Рисунок 5 - Меню «Сетевые настройки»

В разделе «Сетевые настройки» есть возможность настроить доступ к DNSсерверам. Поле DNS-сервер 1 – предпочитаемый DNS-сервер, DNS-сервер 2 – альтернативный DNS-сервер. При получении IP-адреса от DHCP сервера устройство также запрашивает и адрес DNS сервера и автоматически вносит изменение в настройки DNS.

WEB-интерфейс взаимодействия с ИБП

Информация о UPS:

Во вкладке «**Информация**» отображаются номинальные данные получаемые устройством от встроенного контроллера источника бесперебойного питания. Это статические данные сообщающие о характеристиках ИБП. Пример показан на рисунке 6:

erel	SNR-ERD-	-5
Главная RS-485	Информация о UI	PS_
Порты I/О • Сервисы •	Текущее состояние	On line
UPS •	Производитель UPS	
Информация Мониторинг	Ten UPS	Online
Управление Лог	Версия прошивки	V04
Настройки Настройка LAN	Статус Вуразя Звуковой сигнал	Не активен Откл
Администрирование •	Дата замены АКБ	11.02.20
	Номинальное напряжение батареи	24.00B
Поддержка 🔻	Номинальное напряжение Номинальный ток	220.0B
Загрузка обновлений Выход	Номинальная мощность	1100.0Вт
	Номинальная частота	50.0Гц

Рисунок 6 – Вкладка «Информация о UPS»

ETHERNET REMOTE DEVICE

Инструкция по быстрой установке

Мониторинг UPS:

Во вкладке «Мониторинг» отображаются данные получаемые устройством от встроенного контроллера источника бесперебойного питания о текущем собственном состоянии и состоянии электросети. Помимо информации получаемой по протоколу MegaTec, во вкладке присутствуют параметры и состояния, которые вычисляет и контролирует само устройство исходя из исходных входящих данных. Пример показан на рисунке 7:

erd	SNR-ERD-5	
Главная RS-485	Мониторинг UPS	
Порты I/O • Сервисы • UPS •	Режим работы Напряжение на входе	От сетн 227.0В
Информация Мониторинг	Частота	50.1Гц 220 5Р
Управление Лог	Гапряжение на выходе Загрузка	0%
Настройки Настройка LAN	Статус батарен Ёмкость батарен	Норма 105%
Администрирование •	Температура	25.0°C
	Напряжение группы батарей Напряжение одной батарея	13.50B 13.50B
Поддержка •	Craryc Shutdown	UPS Включен
Выход	Статус тестирования	Неактивно
	Продолжительность последнего разряда АКБ	00:00:13

Рисунок 7 – Вкладка «Мониторинг UPS»

Управление UPS:

Во вкладке «Управление» отображаются команды которые можно передать при помощи устройства на встроенный контроллер источника бесперебойного питания для удалённого управления ИБП. Описанные команды управления, соответствуют протоколу MegaTec. Прочитать информацию о расшифровке, можно по <u>ссылке</u>. Пример показан на рисунке 8:

erd	SNR-ERD-5			
Главная				
RS-485	Управлен	ние UPS		
Порты I/О 🔻				
Сервисы •	10 секундный тест		Принять	
UPS •	Тест на указанное время	1 мин	Принять	
Информация				
Мониторинг	Тест до полного разряда		Принять	
Управление				
Лог	время	1 мин	Принять	
Настройки	D			
Настройка LAN	указанное время	1 2	Принять	
Администрирование •				
	Звуковой сигнал	Откл 🛑	Принять	
	Отмена тестирования		Принять	
Поддержка 🔹	Отмена выключения		Принять	
Загрузка обновлений				
Выход				

Рисунок 8 - Вкладка «Управление UPS»

Лог:

Вкладка «Лог» существует для ручного контроля и дебага обмена данными между устройством и источником бесперебойного питания. На ней в реальном времени отображаются запросы в формате ASCII, передаваемые от устройства к ИБП и ответы ИБП на запросы устройства. Дебаг и расшифровку можно выполнить ориентируясь на протокол MegaTec. Прочитать информацию о расшифровке, можно по <u>ссылке</u>. Пример показан на рисунке 9:

Внимание: инструкцию по подключению UPS с интерфейсом RS232 к устройству серии SNR-ERD можно посмотреть по ссылке <u>тут</u>.

Главная					
Порты І/О	орты ИО • Лог				
Сервисы •					
UPS •	12	01:39:36	ERD	2	Q
Информация	11	01-39-35	UPS	39	# V04
Мониторинг	10	01.00.00	EDD		
Управление	10	01:39:33	EKD		
Лог		01:39:33	UPS	47	(225.4 209.3 220.5 022 50.1 2.25 25.0 00000000
Настройки	8	01:39:31	ERD		Q1
Настройка LAN		01-39-31	UPS		
Администрирование 🔹		010000			
	6	01:39:29	ERD		Q1
		01:39:29	ERD		
Поллерука	4	01:39:27	ERD		Q1
Загрузка обновлений		01:39:26	UPS	22	#220.0 005 024.0 50.0
Выход	2	01:39:24	ERD		F
		01:39:24	UPS		# V04
		01:39:23	ERD	2	

Рисунок 9 – Вкладка «Лог»

Настройки:

Во вкладке «Настройки» выполняется установка характеристик Вашего ИБП для корректного вычисления расченных параметров И определения дополнительных статусов. Указав корректные значения в ячейках пограничных значений, Вы сможете получать уведомления при возникновении таких проблем. Ячейка «Дата последней замены батарей» является типом данных «строка» и в неё можно ввести любые символы кириллицу). Указанная строка будет (включая передаваться в соответствующий OID отображаться во вкладке «Информация» на WEBинтерфейсе. Пример показан на рисунке 10:

erd	SNR-ERD	-5
Главная		
RS-485	Настройки	
Порты I/О 🔻		
Сервисы •	Количество батарей	1
UPS •	Напряжение полного заряда батареи (В)	13,38
Информация		
Мониторинг	Напряжение критического заряда батарен (В)	11,50
Управление		
Лог	Напряжение заряда разряженной батареи (В)	11,00
Настройки		
Настройка LAN	Емкость батарен (А.ч)	5,00
Администрирование •	Критическая нагрузка (%)	70
	Поправочный коэффициент мощности	1,00
Поддержка 🔹	Дата последней замены батарей	11.02.20
Загрузка обновлений Выход	Принять	

Рисунок 10 – Вкладка «Настройки»

SNMP-интерфейс

Помимо WEB-интерфейса, устройство позволяет получать показания ИБП и управлять им по протоколу SNMP. Также в соответствующие SNMP OID передаются показания от датчиков (DI/1-wire) и можно управлять выходами. Community SNMP-агента устройства, имеет три уровня доступа

Read: только для чтения;

Write: чтение и запись;

Тгар: дополнительная марка в заголовке SNMP пакета. Позволяет системам мониторинга распределять входящие trap-сообщения или фильтровать не совпадающие.

ETHERNET REMOTE DEVICE

На рисунке 11 представлен внешний вид настройки SNMP-агента в WEB-интерфейсе устройства:

erd	SNR-ERD-5
Главная	
RS-485	Настройки SNMP
Порты I/О 🔻	
Сервисы 🔻	Community Read public
UPS •	Community Write privat
Настройка LAN	
Администрирование •	Community Trap trap
Общие настройки	
SNMP	sysName SNR-ERD-5
Обновление ПО	sysLocation test
	sysContact erd@nag.ru
Поддержка 🔹	IP для транов 192.168.15.10
Загрузка обновлений Выход	Принять

Рисунок 11 – Настройка SNMP-агента устройства

Доступ к OID-ам можно получить как через командную строку, так и через SNMP-менеджер. Для работы через командную строку подойдет свободно распространяемая программа <u>net-snmp</u>. А в качестве SNMP-менеджера можно использовать <u>MIB Browser</u> (потребуется MIB-файл). Устройство использует стандартный MIB-UPS (RFC-1628) и в дополнение собственный SNR-ERD-5.mib. MIB-файл можно скачать в соответствующем каталоге файлового архива <u>MIB</u>. В качестве системы мониторинга подойдут <u>The Dude</u>, <u>PRTG</u> или <u>Zabbix</u>.

Дополнительно можно воспользоваться рядом рекомендованных программ, которые можно скачать с файлового <u>архива</u>.

Оповещения о событиях SNMP Traps

Для получения оповещений о регистрации событий необходимо настроить IP-адрес получателя trap'ов и указать соответствующее trapсоmmunity если оно используется Вашей системой мониторинга. Сделать это можно через web-интерфейс на странице «Администрирование» в разделе «SNMP» в строке «IP для трапов» и «Community Trap».

Подключение датчиков температуры SNR-DTS-2

Каждый датчик подключается контактами определённых цветов к соответствующим контактам устройства (Рисунок 12).

• черный и красный (GND и VDD – «1» и «3») к контакту 18, расположенном на 8ми контактном разъёме.

Поддерживается также трёх проводная схема подключения 1-wire (красный к контакту +5В - 33 расположенном на втором 8ми контактном разъёме).

• жёлтый (DQ – «2») к контакту 19, расположенном на 8ми контактном разъёме

Рисунок 12 – Контакты датчика Dallas 18В20

Порты DIO

SNR-ERD-5 имеет 6 портов DIO, каждый из которых может работать либо в режиме входа (DI), либо в режиме выхода (DO). По умолчанию все порты работают в режиме DI. Выбор режима портов осуществляется через web-интерфейс на странице «Порты I/O» на вкладке «Настройки».

Режим DI. В этом режиме порты поддерживают подключение различных датчиков с релейным выходом (датчик открытия двери и пр.). Пример схемы подключения датчиков приведён на рисунке 13.

S1 – датчик с нормально разомкнутыми контактами;

ETHERNET REMOTE DEVICE

S2 – датчик с нормально замкнутыми контактами;

GND – общий контакт «земля»;

DIO1 - универсальный цифровой порт 1;

DIO2 - универсальный цифровой порт 2;

Рисунок 13 – Схема подключения датчиков с релейным выходом

Режим DO. В этом режиме порты DIO1-4 и 6 имеют напряжение до 5В и рабочий ток до 10 мА, а DIO5 имеет ток до 200 мА. Это позволяет при помощи DIO1-4 и 6 портов передавать дискретное состояние «сухого контакта» а с помощью DIO5 управлять внешними нагрузками, такими как розетки <u>SNR-SMART</u>, реле и контакторы. Максимальная нагрузка, подключённая напрямую в DIO5 - 200мА. Для примера реле в <u>SMART-DIN-B</u> потребляет 70мА.

Внимание: такие нагрузки (свыше 10мА) НЕ РЕКОМЕНДУЕТСЯ включать в порты DIO1-4, 6 - это может привести к выходу DIO из строя. Пример подключения DIO5 показан на рисунке 14:

Рисунок 14 - Управление внешним реле при помощи DIO в режиме «выхода»

Конвертор интерфейсов

Последовательный интерфейс RS-485 позволяют использовать SNR-ERD в качестве конвертера интерфейсов Ethernet/RS-485. Интерфейс RS-232 применяемый для опроса ИБП и RS-485 работают независимо друг от друга, и могут использоваться одновременно.

Для того, что бы передавать данные в последовательный порт <u>RS-485</u> по интерфейсу Ethernet, необходимо открыть TCP/IP соединение по **50 порту**.

Настройка формата фреймов осуществляется через WEB-интерфейс на странице «Настройки».

Пример работы конвертера интерфейсов представлен в <u>инструкции</u> <u>"прозрачного" TCP соединения</u>.

Обновление программного обеспечения

Последняя версия прошивки устройства доступна по адресу <u>http://data.nag.ru/SNR%20ERD/SNR-ERD-5/Firmware/</u>

Для обновления прошивки необходимо открыть WEB-интерфейс устройства, перейти на страницу «Администрирование» на вкладке «Обновление ПО», указать путь к файлу прошивки (firmware_ERD-5.bin) и нажать кнопку «Загрузить». После того, как файл будет загружен, устройство перезагрузится в течение 3-5 секунд. На рисунке 15 представлена страница Обносления ПО:

erd	SNR-ER	ND-5	
Главная			
RS-485	Система	l	
Порты I/О 🔻	Версия прошивки	100	
Сервисы •			
UPS •	Версия загрузчика	1.2	
Настройка LAN	Перезагрузок устройства при ошибке	0	
Администрирование •	Выбрать файл прошивки для загрузки в	Выберите файл ERD-5_0.bin	
Общие настройки	устройство:		
SNMP	Загрузить		
Обновление ПО			

ВАСКИР конфигурации

Устройство позволяет выполнить backup конфигурации. Скачать текущий .conf файл можно во вкладке WEB-интерфейса "Обновление ПО".

Внимание: в файл конфигурации не сохраняются сетевые настройки, для удобства масштабирования типовой конфигурации на вновь установленные устройства доведённых до сетевой доступности. Внешний вид меню представлен на рисунке 16:

erd	SNR-ER	D- 5
Главная		
RS-485	Система	
Порты І/О 🔻	D	100
Сервисы •	Берсия прошивки	1.0.0
UPS •	Версня загрузчика	1.2
Настройка LAN	Перезагрузок устройства при опнибке	0
Администрирование •	Выбрать файл прошивки для загрузки в	D. Germanderin
Общие настройки	устройство:	Выберите фаил Фаил Сыбран
SNMP	Перезагрузит	b
Обновление ПО		
	Конфигура	ция
	Разрешить использование TFTP	Принять
Поддержка 🔻		CND TOD 5 and
Загрузка обновлений	Скачать фанл конфигурации	SINK-EKD-J.com
Выход	Выбрать файл конфигурации для загрузки в устройство:	Выберите файл Файлбран
	Загрузить	

Рисунок 16 - Backup конфигурации

Работа с протоколом ТFTP

Устройство SNR-ERD-5 так же позволяет обновить прошивку и загрузить файл конфигурации по TFTP протоколу с помощью программы – TFTP-клиента. Для обновления прошивки по протоколу TFTP необходимо:

- 1) В программе ТFTР-клиенте указать файл прошивки .bin или файл конфигурации .conf на диске.
- 2) Ввести IP адрес устройства в качестве Host'a (сервера).
- 3) Указать порт для подключения «69».
- 4) Нажать соответствующую кнопку загрузки файла на сервер.

В качестве примера представлена свободно распространяемая программа «Tftpd», в которой:

- В поле «Host» указан IP адрес устройства
- В поле«Port» указан 69 порт для подключения
- В поле«Local file» указан пусть к файлу прошивки устройства
- Кнопкой «Put» осуществляется загрузка файла прошивки в память устройства

Інструкция і	по быстрой ус	становке		
	🏘 Tftpd64 by Ph. Jounin		<i>8</i> —	o x
	Current Directory	C:\Program Files\Tftpd6	4 💌	Browse
	Server interfaces	127.0.0.1	Software L 💌	Show Dir
	Tftp Server Tftp	o Client DHCP server S	yslog server 🛛 Log v	iewer
	Host 192.16	68.15.20	Port 69	_
	Local File	Actuall\ERD-5_03.03.20	020_14.10.bin]
	Remote File			
	Block Size	Default 👻		
		,		
		GetPut	Break	

Рисунок 17 – Окно программы «Tftpd»

Программа «Tftpd» бесплатна, и доступна на сайте разработчика и на файловом архиве компании «НАГ».

В случаях непредвиденных ситуаций, при которых прошивка устройства может быть повреждена, устройство позволяет самостоятельно восстановить ПО вышеописанным способом (по TFTP протоколу) из Bootloader'a (загрузчика). Для этого необходимо:

- 1) Выбрать файл прошивки устройства
- 2) Указать IP адрес и порт для подключения к устройству
- 3) Подключить питание устройства
- 4) При появлении ответов на ICMP запросы (ping) в течение 1-3 секунд (пока устройство работает в режиме загрузчика, мигает зелёный индикатор «PWR») нажать соответствующую кнопку в программе – ТFTP клиенте для загрузки файла.

За помощью в конфигурации вы можете обратиться на наш форум http://forum.nag.ru/, или оставить обращение в системе технической поддержки http://support.nag.ru/. Для прямого общения с техническими специалистами напишите своей вопрос на erd@nag.ru